Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            Plasma treatment has emerged as a promising tool for manipulating plant microbiomes and metabolites. This review explores the diverse applications and effects of plasma on these biological systems. It is hypothesized that plasma treatment will not induce substantial changes in the composition of plant microbiomes or the concentration of plant metabolites. We delve into the mechanisms by which plasma can regulate microbial communities, enhance antimicrobial activity, and recruit beneficial microbes to mitigate stress. Furthermore, we discuss the optimization of plasma parameters for effective microbiome interaction and the role of plasmids in plant–microbe interactions. By characterizing plasmidome responses to plasma exposure and investigating transcriptional and metabolomic shifts, we provide insights into the potential of plasma as a tool for engineering beneficial plant–microbe interactions. The review presented herein demonstrates that plasma treatment induces substantial changes in both microbial community composition and metabolite levels, thereby refuting our initial hypothesis. Finally, we integrate plasmidome, transcriptome, and metabolome data to develop a comprehensive understanding of plasma’s effects on plant biology and explore future perspectives for agricultural applications.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available November 1, 2025
- 
            Rhizosphere microbiome exerts a significant role in plant health, influencing nutrient availability, disease resistance, and overall plant growth. Establishing a robust and efficient nodulation process is essential for optimal nitrogen fixation in legumes like soybeans. Different soybean genotypes exhibit variations in their rhizosphere microbiome, potentially impacting nitrogen fixation through nodulation. However, a detailed understanding of how specific soybean genotypes influence rhizosphere microbial communities and nodulation patterns remains limited. Our study aims to investigate the relationship between rhizosphere microbial abundance and plant growth in four soybean genotypes. We evaluated plant growth parameters, including biomass, leaf area, and stomatal conductance, and identified significant genotypic differences in nodulation. Specifically, genotypes PI 458505 and PI 603490 exhibited high levels of nodulation, while PI 605839A and PI 548400 displayed low nodulation. 16S rRNA gene amplicon sequencing revealed diverse bacterial communities in the rhizosphere, with Proteobacteria as the dominant phylum. High-nodulation genotypes harbored more diverse microbial communities enriched with Actinobacteria and Acidobacteriota, while low-nodulation genotypes showed higher abundances of Firmicutes and Planctomycetota. Alpha and beta diversity analyses confirmed distinct microbial community structures between high- and low-nodulation groups. Our findings suggest that the rhizosphere microbiome significantly influences soybean growth and nodulation, highlighting the potential for genotype-driven strategies to enhance plant-microbe interactions and improve soybean productivity.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Submerged plants can thrive entirely underwater, playing a crucial role in maintaining water quality, supporting aquatic organisms, and enhancing sediment stability. However, they face multiple challenges, including reduced light availability, fluctuating water conditions, and limited nutrient access. Despite these stresses, submerged plants demonstrate remarkable resilience through physiological and biochemical adaptations. Additionally, their interactions with microbial communities are increasingly recognized as pivotal in mitigating these environmental stresses. Understanding the diversity of these microbial communities is crucial for comprehending the complex interactions between submerged plants and their environments. This research aims to identify and screen microbes from submerged plant samples capable of producing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and to explore microbial diversity through metagenomic analysis. Microbes were isolated and screened for ACC deaminase production, and metagenomic techniques, including co-occurrence network analysis, were used to examine microbial diversity and interactions within the communities. ACC deaminase-producing microbes can significantly enhance plant metabolism under stress conditions. The identification of the culturable bacteria revealed that most of these microbes belong to the genera Pseudomonas, Bacillus, and Acinetobacter. A total of 177 microbial strains were cultured, with molecular identification revealing 79 reductant, 86 non-reductant, and 12 uncultured strains. Among 162 samples screened for ACC deaminase activity, 50 tested positive. To further understand microbial dynamics, samples were collected from both natural sources and artificial pond reservoirs to assess the impact of the location on flood-associated microbiomes in submerged plants. Metagenomic analysis was conducted on both the epiphytic and endophytic samples. By exploring the overall composition and dynamics of microbial communities associated with submerged plants, this research seeks to deepen our understanding of plant–microbe interactions in aquatic environments. The microbial screening helped to identify the diverse microbes associated with ACC deaminase activity in submerged plants and amplicon sequencing analysis paved the way towards identifying the impact of the location in shaping the microbiome and the diversity associated with endophytic and epiphytic microbes. Co-occurrence network analysis further highlighted the intricate interactions within these microbial communities. Notably, ACC deaminase activity was observed in plant-associated microbes across different locations, with distinct variations between epiphytic and endophytic populations as identified through co-occurrence network analysis.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Duckweed (Lemnaceae) rises as a crucial model system due to its unique characteristics and wide-ranging utility. The significance of physiological research and phytoremediation highlights the intricate potential of duckweed in the current era of plant biology. Special attention to duckweed has been brought due to its distinctive features of nutrient uptake, ion transport dynamics, detoxification, intricate signaling, and stress tolerance. In addition, duckweed can alleviate environmental pollutants and enhance sustainability by participating in bioremediation processes and wastewater treatment. Furthermore, insights into the genomic complexity of Lemnaceae species and the flourishing field of transgenic development highlight the opportunities for genetic manipulation and biotechnological innovations. Novel methods for the germplasm conservation of duckweed can be adopted to preserve genetic diversity for future research endeavors and breeding programs. This review centers around prospects in duckweed research promoting interdisciplinary collaborations and technological advancements to drive its full potential as a model organism.more » « less
- 
            Drought is one of the most serious abiotic stressors in the environment, restricting agricultural production by reducing plant growth, development, and productivity. To investigate such a complex and multifaceted stressor and its effects on plants, a systems biology-based approach is necessitated, entailing the generation of co-expression networks, identification of high-priority transcription factors (TFs), dynamic mathematical modeling, and computational simulations. Here, we studied a high-resolution drought transcriptome of Arabidopsis. We identified distinct temporal transcriptional signatures and demonstrated the involvement of specific biological pathways. Generation of a large-scale co-expression network followed by network centrality analyses identified 117 TFs that possess critical properties of hubs, bottlenecks, and high clustering coefficient nodes. Dynamic transcriptional regulatory modeling of integrated TF targets and transcriptome datasets uncovered major transcriptional events during the course of drought stress. Mathematical transcriptional simulations allowed us to ascertain the activation status of major TFs, as well as the transcriptional intensity and amplitude of their target genes. Finally, we validated our predictions by providing experimental evidence of gene expression under drought stress for a set of four TFs and their major target genes using qRT-PCR. Taken together, we provided a systems-level perspective on the dynamic transcriptional regulation during drought stress in Arabidopsis and uncovered numerous novel TFs that could potentially be used in future genetic crop engineering programs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
